3.1.32 \(\int \frac {\tan ^3(d+e x)}{(a+b \cot ^2(d+e x)+c \cot ^4(d+e x))^{3/2}} \, dx\) [32]

Optimal. Leaf size=478 \[ -\frac {\tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 a^{3/2} e}-\frac {3 b \tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{4 a^{5/2} e}+\frac {\tanh ^{-1}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}+\frac {b^2-2 a c+b c \cot ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\left (b^2-2 a c+b c \cot ^2(d+e x)\right ) \tan ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\left (3 b^2-8 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 a^2 \left (b^2-4 a c\right ) e} \]

[Out]

-1/2*arctanh(1/2*(2*a+b*cot(e*x+d)^2)/a^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/a^(3/2)/e-3/4*b*arctanh
(1/2*(2*a+b*cot(e*x+d)^2)/a^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/a^(5/2)/e+1/2*arctanh(1/2*(2*a-b+(b
-2*c)*cot(e*x+d)^2)/(a-b+c)^(1/2)/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2))/(a-b+c)^(3/2)/e+(b^2-2*a*c+b*c*cot(
e*x+d)^2)/a/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)+(-b^2+2*a*c+b*c-(b-2*c)*c*cot(e*x+d)^2)/(a-
b+c)/(-4*a*c+b^2)/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)-(b^2-2*a*c+b*c*cot(e*x+d)^2)*tan(e*x+d)^2/a/(-4*a*
c+b^2)/e/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)+1/2*(-8*a*c+3*b^2)*(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(1/2)*ta
n(e*x+d)^2/a^2/(-4*a*c+b^2)/e

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 478, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 8, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3782, 1265, 974, 754, 820, 738, 212, 12} \begin {gather*} -\frac {3 b \tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{4 a^{5/2} e}-\frac {\tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 a^{3/2} e}+\frac {\left (3 b^2-8 a c\right ) \tan ^2(d+e x) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}{2 a^2 e \left (b^2-4 a c\right )}+\frac {-2 a c+b^2+b c \cot ^2(d+e x)}{a e \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {-2 a c+b^2+c (b-2 c) \cot ^2(d+e x)-b c}{e (a-b+c) \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\tan ^2(d+e x) \left (-2 a c+b^2+b c \cot ^2(d+e x)\right )}{a e \left (b^2-4 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\tanh ^{-1}\left (\frac {2 a+(b-2 c) \cot ^2(d+e x)-b}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 e (a-b+c)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tan[d + e*x]^3/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

-1/2*ArcTanh[(2*a + b*Cot[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])]/(a^(3/2)*e) -
 (3*b*ArcTanh[(2*a + b*Cot[d + e*x]^2)/(2*Sqrt[a]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4])])/(4*a^(5/2)*
e) + ArcTanh[(2*a - b + (b - 2*c)*Cot[d + e*x]^2)/(2*Sqrt[a - b + c]*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x
]^4])]/(2*(a - b + c)^(3/2)*e) + (b^2 - 2*a*c + b*c*Cot[d + e*x]^2)/(a*(b^2 - 4*a*c)*e*Sqrt[a + b*Cot[d + e*x]
^2 + c*Cot[d + e*x]^4]) - (b^2 - 2*a*c - b*c + (b - 2*c)*c*Cot[d + e*x]^2)/((a - b + c)*(b^2 - 4*a*c)*e*Sqrt[a
 + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]) - ((b^2 - 2*a*c + b*c*Cot[d + e*x]^2)*Tan[d + e*x]^2)/(a*(b^2 - 4*a*c
)*e*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4]) + ((3*b^2 - 8*a*c)*Sqrt[a + b*Cot[d + e*x]^2 + c*Cot[d + e*
x]^4]*Tan[d + e*x]^2)/(2*a^2*(b^2 - 4*a*c)*e)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 754

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
 a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x
, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b
*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && LtQ[p, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 820

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Dist[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[S
implify[m + 2*p + 3], 0]

Rule 974

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] &&
ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rule 1265

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2,
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &&
 IntegerQ[(m - 1)/2]

Rule 3782

Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Dist[-f/e, Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin {align*} \int \frac {\tan ^3(d+e x)}{\left (a+b \cot ^2(d+e x)+c \cot ^4(d+e x)\right )^{3/2}} \, dx &=-\frac {\text {Subst}\left (\int \frac {1}{x^3 \left (1+x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx,x,\cot (d+e x)\right )}{e}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{x^2 (1+x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}\\ &=-\frac {\text {Subst}\left (\int \left (\frac {1}{x^2 \left (a+b x+c x^2\right )^{3/2}}-\frac {1}{x \left (a+b x+c x^2\right )^{3/2}}+\frac {1}{(1+x) \left (a+b x+c x^2\right )^{3/2}}\right ) \, dx,x,\cot ^2(d+e x)\right )}{2 e}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{x^2 \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}+\frac {\text {Subst}\left (\int \frac {1}{x \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}-\frac {\text {Subst}\left (\int \frac {1}{(1+x) \left (a+b x+c x^2\right )^{3/2}} \, dx,x,\cot ^2(d+e x)\right )}{2 e}\\ &=\frac {b^2-2 a c+b c \cot ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\left (b^2-2 a c+b c \cot ^2(d+e x)\right ) \tan ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\text {Subst}\left (\int \frac {-\frac {b^2}{2}+2 a c}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{a \left (b^2-4 a c\right ) e}+\frac {\text {Subst}\left (\int \frac {\frac {1}{2} \left (-3 b^2+8 a c\right )-b c x}{x^2 \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{a \left (b^2-4 a c\right ) e}+\frac {\text {Subst}\left (\int \frac {-\frac {b^2}{2}+2 a c}{(1+x) \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{(a-b+c) \left (b^2-4 a c\right ) e}\\ &=\frac {b^2-2 a c+b c \cot ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\left (b^2-2 a c+b c \cot ^2(d+e x)\right ) \tan ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\left (3 b^2-8 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 a^2 \left (b^2-4 a c\right ) e}+\frac {\text {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{2 a e}+\frac {(3 b) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{4 a^2 e}-\frac {\text {Subst}\left (\int \frac {1}{(1+x) \sqrt {a+b x+c x^2}} \, dx,x,\cot ^2(d+e x)\right )}{2 (a-b+c) e}\\ &=\frac {b^2-2 a c+b c \cot ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\left (b^2-2 a c+b c \cot ^2(d+e x)\right ) \tan ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\left (3 b^2-8 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 a^2 \left (b^2-4 a c\right ) e}-\frac {\text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \cot ^2(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{a e}-\frac {(3 b) \text {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {2 a+b \cot ^2(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 a^2 e}+\frac {\text {Subst}\left (\int \frac {1}{4 a-4 b+4 c-x^2} \, dx,x,\frac {2 a-b-(-b+2 c) \cot ^2(d+e x)}{\sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{(a-b+c) e}\\ &=-\frac {\tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 a^{3/2} e}-\frac {3 b \tanh ^{-1}\left (\frac {2 a+b \cot ^2(d+e x)}{2 \sqrt {a} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{4 a^{5/2} e}+\frac {\tanh ^{-1}\left (\frac {2 a-b+(b-2 c) \cot ^2(d+e x)}{2 \sqrt {a-b+c} \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}\right )}{2 (a-b+c)^{3/2} e}+\frac {b^2-2 a c+b c \cot ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {b^2-2 a c-b c+(b-2 c) c \cot ^2(d+e x)}{(a-b+c) \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}-\frac {\left (b^2-2 a c+b c \cot ^2(d+e x)\right ) \tan ^2(d+e x)}{a \left (b^2-4 a c\right ) e \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)}}+\frac {\left (3 b^2-8 a c\right ) \sqrt {a+b \cot ^2(d+e x)+c \cot ^4(d+e x)} \tan ^2(d+e x)}{2 a^2 \left (b^2-4 a c\right ) e}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 37.67, size = 293889, normalized size = 614.83 \begin {gather*} \text {Result too large to show} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Tan[d + e*x]^3/(a + b*Cot[d + e*x]^2 + c*Cot[d + e*x]^4)^(3/2),x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [F]
time = 0.75, size = 0, normalized size = 0.00 \[\int \frac {\tan ^{3}\left (e x +d \right )}{\left (a +b \left (\cot ^{2}\left (e x +d \right )\right )+c \left (\cot ^{4}\left (e x +d \right )\right )\right )^{\frac {3}{2}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x)

[Out]

int(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x)

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 1329 vs. \(2 (453) = 906\).
time = 9.05, size = 5394, normalized size = 11.28 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="fricas")

[Out]

[-1/8*((4*(2*a^2 + 3*a*b)*c^4 - (2*a^4*b^2 - a^3*b^3 - 4*a^2*b^4 + 3*a*b^5 - 4*(2*a^3 + 3*a^2*b)*c^3 - (16*a^4
 + 8*a^3*b - 26*a^2*b^2 - 3*a*b^3)*c^2 - 2*(4*a^5 - 2*a^4*b - 10*a^3*b^2 + 5*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d
)^4 + (16*a^3 + 8*a^2*b - 26*a*b^2 - 3*b^3)*c^3 + 2*(4*a^4 - 2*a^3*b - 10*a^2*b^2 + 5*a*b^3 + 3*b^4)*c^2 - (2*
a^3*b^3 - a^2*b^4 - 4*a*b^5 + 3*b^6 - 4*(2*a^2*b + 3*a*b^2)*c^3 - (16*a^3*b + 8*a^2*b^2 - 26*a*b^3 - 3*b^4)*c^
2 - 2*(4*a^4*b - 2*a^3*b^2 - 10*a^2*b^3 + 5*a*b^4 + 3*b^5)*c)*tan(x*e + d)^2 - (2*a^3*b^2 - a^2*b^3 - 4*a*b^4
+ 3*b^5)*c)*sqrt(a)*log(8*a^2*tan(x*e + d)^4 + 8*a*b*tan(x*e + d)^2 + b^2 + 4*a*c - 4*(2*a*tan(x*e + d)^4 + b*
tan(x*e + d)^2)*sqrt(a)*sqrt((a*tan(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e + d)^4)) - 2*(a^3*b^2*c - 4*a^4
*c^2 + (a^4*b^2 - 4*a^5*c)*tan(x*e + d)^4 + (a^3*b^3 - 4*a^4*b*c)*tan(x*e + d)^2)*sqrt(a - b + c)*log(((8*a^2
- 8*a*b + b^2 + 4*a*c)*tan(x*e + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(x*e + d)^2 + b^2 + 4*(a - 2*b)*c +
 8*c^2 + 4*((2*a - b)*tan(x*e + d)^4 + (b - 2*c)*tan(x*e + d)^2)*sqrt(a - b + c)*sqrt((a*tan(x*e + d)^4 + b*ta
n(x*e + d)^2 + c)/tan(x*e + d)^4))/(tan(x*e + d)^4 + 2*tan(x*e + d)^2 + 1)) - 4*((a^4*b^2 - 2*a^3*b^3 + a^2*b^
4 - 4*a^3*c^3 - (8*a^4 - 8*a^3*b - a^2*b^2)*c^2 - 2*(2*a^5 - 4*a^4*b + a^3*b^2 + a^2*b^3)*c)*tan(x*e + d)^6 +
(a^3*b^3 - 4*a^2*b^4 + 3*a*b^5 - 2*(2*a^3 + 5*a^2*b)*c^3 - (4*a^4 + 10*a^3*b - 22*a^2*b^2 - 3*a*b^3)*c^2 - 2*(
2*a^4*b - 8*a^3*b^2 + 4*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d)^4 - (8*a^2*c^4 + 3*(4*a^3 - 6*a^2*b - a*b^2)*c^3 +
2*(2*a^4 - 7*a^3*b + 3*a^2*b^2 + 3*a*b^3)*c^2 - (a^3*b^2 - 4*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d)^2)*sqrt((a*tan
(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e + d)^4))/((a^6*b^2 - 2*a^5*b^3 + a^4*b^4 - 4*a^5*c^3 - (8*a^6 - 8*
a^5*b - a^4*b^2)*c^2 - 2*(2*a^7 - 4*a^6*b + a^5*b^2 + a^4*b^3)*c)*e*tan(x*e + d)^4 + (a^5*b^3 - 2*a^4*b^4 + a^
3*b^5 - 4*a^4*b*c^3 - (8*a^5*b - 8*a^4*b^2 - a^3*b^3)*c^2 - 2*(2*a^6*b - 4*a^5*b^2 + a^4*b^3 + a^3*b^4)*c)*e*t
an(x*e + d)^2 - (4*a^4*c^4 + (8*a^5 - 8*a^4*b - a^3*b^2)*c^3 + 2*(2*a^6 - 4*a^5*b + a^4*b^2 + a^3*b^3)*c^2 - (
a^5*b^2 - 2*a^4*b^3 + a^3*b^4)*c)*e), -1/4*((4*(2*a^2 + 3*a*b)*c^4 - (2*a^4*b^2 - a^3*b^3 - 4*a^2*b^4 + 3*a*b^
5 - 4*(2*a^3 + 3*a^2*b)*c^3 - (16*a^4 + 8*a^3*b - 26*a^2*b^2 - 3*a*b^3)*c^2 - 2*(4*a^5 - 2*a^4*b - 10*a^3*b^2
+ 5*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d)^4 + (16*a^3 + 8*a^2*b - 26*a*b^2 - 3*b^3)*c^3 + 2*(4*a^4 - 2*a^3*b - 10
*a^2*b^2 + 5*a*b^3 + 3*b^4)*c^2 - (2*a^3*b^3 - a^2*b^4 - 4*a*b^5 + 3*b^6 - 4*(2*a^2*b + 3*a*b^2)*c^3 - (16*a^3
*b + 8*a^2*b^2 - 26*a*b^3 - 3*b^4)*c^2 - 2*(4*a^4*b - 2*a^3*b^2 - 10*a^2*b^3 + 5*a*b^4 + 3*b^5)*c)*tan(x*e + d
)^2 - (2*a^3*b^2 - a^2*b^3 - 4*a*b^4 + 3*b^5)*c)*sqrt(-a)*arctan(1/2*(2*a*tan(x*e + d)^4 + b*tan(x*e + d)^2)*s
qrt(-a)*sqrt((a*tan(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e + d)^4)/(a^2*tan(x*e + d)^4 + a*b*tan(x*e + d)^
2 + a*c)) - (a^3*b^2*c - 4*a^4*c^2 + (a^4*b^2 - 4*a^5*c)*tan(x*e + d)^4 + (a^3*b^3 - 4*a^4*b*c)*tan(x*e + d)^2
)*sqrt(a - b + c)*log(((8*a^2 - 8*a*b + b^2 + 4*a*c)*tan(x*e + d)^4 + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*tan(x*e
+ d)^2 + b^2 + 4*(a - 2*b)*c + 8*c^2 + 4*((2*a - b)*tan(x*e + d)^4 + (b - 2*c)*tan(x*e + d)^2)*sqrt(a - b + c)
*sqrt((a*tan(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e + d)^4))/(tan(x*e + d)^4 + 2*tan(x*e + d)^2 + 1)) - 2*
((a^4*b^2 - 2*a^3*b^3 + a^2*b^4 - 4*a^3*c^3 - (8*a^4 - 8*a^3*b - a^2*b^2)*c^2 - 2*(2*a^5 - 4*a^4*b + a^3*b^2 +
 a^2*b^3)*c)*tan(x*e + d)^6 + (a^3*b^3 - 4*a^2*b^4 + 3*a*b^5 - 2*(2*a^3 + 5*a^2*b)*c^3 - (4*a^4 + 10*a^3*b - 2
2*a^2*b^2 - 3*a*b^3)*c^2 - 2*(2*a^4*b - 8*a^3*b^2 + 4*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d)^4 - (8*a^2*c^4 + 3*(4
*a^3 - 6*a^2*b - a*b^2)*c^3 + 2*(2*a^4 - 7*a^3*b + 3*a^2*b^2 + 3*a*b^3)*c^2 - (a^3*b^2 - 4*a^2*b^3 + 3*a*b^4)*
c)*tan(x*e + d)^2)*sqrt((a*tan(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e + d)^4))/((a^6*b^2 - 2*a^5*b^3 + a^4
*b^4 - 4*a^5*c^3 - (8*a^6 - 8*a^5*b - a^4*b^2)*c^2 - 2*(2*a^7 - 4*a^6*b + a^5*b^2 + a^4*b^3)*c)*e*tan(x*e + d)
^4 + (a^5*b^3 - 2*a^4*b^4 + a^3*b^5 - 4*a^4*b*c^3 - (8*a^5*b - 8*a^4*b^2 - a^3*b^3)*c^2 - 2*(2*a^6*b - 4*a^5*b
^2 + a^4*b^3 + a^3*b^4)*c)*e*tan(x*e + d)^2 - (4*a^4*c^4 + (8*a^5 - 8*a^4*b - a^3*b^2)*c^3 + 2*(2*a^6 - 4*a^5*
b + a^4*b^2 + a^3*b^3)*c^2 - (a^5*b^2 - 2*a^4*b^3 + a^3*b^4)*c)*e), 1/8*(4*(a^3*b^2*c - 4*a^4*c^2 + (a^4*b^2 -
 4*a^5*c)*tan(x*e + d)^4 + (a^3*b^3 - 4*a^4*b*c)*tan(x*e + d)^2)*sqrt(-a + b - c)*arctan(-1/2*((2*a - b)*tan(x
*e + d)^4 + (b - 2*c)*tan(x*e + d)^2)*sqrt(-a + b - c)*sqrt((a*tan(x*e + d)^4 + b*tan(x*e + d)^2 + c)/tan(x*e
+ d)^4)/((a^2 - a*b + a*c)*tan(x*e + d)^4 + (a*b - b^2 + b*c)*tan(x*e + d)^2 + (a - b)*c + c^2)) - (4*(2*a^2 +
 3*a*b)*c^4 - (2*a^4*b^2 - a^3*b^3 - 4*a^2*b^4 + 3*a*b^5 - 4*(2*a^3 + 3*a^2*b)*c^3 - (16*a^4 + 8*a^3*b - 26*a^
2*b^2 - 3*a*b^3)*c^2 - 2*(4*a^5 - 2*a^4*b - 10*a^3*b^2 + 5*a^2*b^3 + 3*a*b^4)*c)*tan(x*e + d)^4 + (16*a^3 + 8*
a^2*b - 26*a*b^2 - 3*b^3)*c^3 + 2*(4*a^4 - 2*a^3*b - 10*a^2*b^2 + 5*a*b^3 + 3*b^4)*c^2 - (2*a^3*b^3 - a^2*b^4
- 4*a*b^5 + 3*b^6 - 4*(2*a^2*b + 3*a*b^2)*c^3 -...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tan ^{3}{\left (d + e x \right )}}{\left (a + b \cot ^{2}{\left (d + e x \right )} + c \cot ^{4}{\left (d + e x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)**3/(a+b*cot(e*x+d)**2+c*cot(e*x+d)**4)**(3/2),x)

[Out]

Integral(tan(d + e*x)**3/(a + b*cot(d + e*x)**2 + c*cot(d + e*x)**4)**(3/2), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(e*x+d)^3/(a+b*cot(e*x+d)^2+c*cot(e*x+d)^4)^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F(-1)]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \text {Hanged} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d + e*x)^3/(a + b*cot(d + e*x)^2 + c*cot(d + e*x)^4)^(3/2),x)

[Out]

\text{Hanged}

________________________________________________________________________________________